Mani-fold on to your hats!

The process of putting together a turbo manifold was a lot more stressful to me than any other part of the car to date- besides the header before it.

The need to visualize and start to piece together weld elbows and straight piping isn’t something that I would consider a strength of mine. More of the opposite. I approached it the same way as I do many things in life. Identify the starting point, then the destination and finally connect the dots.

I started by bolting on the head flange which was easy because it was a quality piece and didn’t require me to crush the pipe into an oval. Then I mounted the merge collector on the turbo and slid in a piece of metal bar stock between them so I could mount it to the chassis with clamps. With the start and end identified it was simply about filling in the gaps

I started with the hardest runner first and tacked pieces together. It actually went along easier than I expected as I would tack and slice elbows until it went where I wanted. Occasionally an elbow was sacrificed but at $5 a piece it was a small cost of less than $15 to have a well fitting manifold.

At the end of the day it took far more money to build the manifold than I expected. Here is a quick run down of why mine was expensive:

  • Head Flange-$60
  • Merge collector with flange-$80.
  • 12 weld els-$70 (only used 9).
  • Straight stainless tube 12” long- $8.
  • Filler metal in 308L and 309L-$30.
  • Dual port argon regulator $130.
  • Argon $60 for 120 cu ft (used a good bit because of back purging

The parts were not that expensive but the 3 hours of fabrication to mock it up and 16 hours for welding it was more than I expected. This is probably a startup and learning cost of I had to state a reason. If I had the tools it would have been cheaper (I had the TIG welder..but this was largely it’s first use). A friend that is a solid fabricator (professional) said he would do it for $800. That’s a pretty good deal in my eyes.

Up next is to evaluate if polishing will work or if I should coat it followed by the down pipe and wastegate output into the exhaust. While I hate the fact the turbo is outside the chassis- there just were no other choices.

Welds were flatter than expected. I struggled to get the ridges and dimes look I expected but penetration was good
A reverse rotation turbo would have been better but the space is there if I find myself needing to replace this one.

K20 Power now bolted in!

It took a while but I snuck a half day into working on the car with my dad. While I thought it was 3 hours of work it actually took 6.

First thing was to pull the k20a3 and remove the transmission and adapter plate.

Up next was moving those parts to the K20z3 and bolting them all back together.

From there we worked out what needed to be changed and we we removed and replaced a tube in the chassis. We also removed the old motor mounting plate and cut a new piece. After 5-10 minutes of welding we started to position the engine.

After measuring and cutting several tubes we had the left side mounted. Next we leveled the engine to 0.6 degrees and started on the driver side. They came out quite well

The final step was to check hood clearance. I didn’t expect it to fit but was nicely surprised. 3 mm to spare!

There week be some challenges with the steering and alternator but those are for a different day!

Ground clearance is a nice and acceptable 4″

Up next is the transmission mounts!

This engine is fighting me every step of the way!

From the moment I bought the engine it has fought me every step of the way. It seems the “Honda mechanic” that I bought it from was either a fantastic liar or had a love affair with red locktite.

I first realized it when I broke a 3/8″ extension trying to remove a flywheel bolt. I then brought out the impact wrench and it did absolutely nothing. A trip to the Chinese took store and coming home with an impact wrench that can make 800ft lbs of torque. The results? Nothing! Didn’t move it at all! Even tried heating the bolt to break the locktite but nothing changed.

Thankfully I have an amazing coworker that has the 1200lb version of the torque wrench. First thing it did was split the 12 point socket into 2. A trip to the orange store and $4 later I had a new 12 point 17mm socket. Given the first one slightly damaged the bolt head I decided to face off the new socket so it would have more grip and less of the rounded approach that makes sockets easier to get on to the bolt.

Unfortunately the bolt head on 2 of them bolts was too damaged. What happens next? Out came the welder! It took 3 attempts with the mig welder but adding a 3/4″ bolt did the trick finally. Most likely the heat of welding broke down any remaining locktite.

Up next I will put the engine back on the engine stand and verify the bottom end is good. And then we can start adding parts. The collection of “go fast parts” is growing!